
Type Operators
Grouping
(parentheses)

()

Numbers
1234.5 2.4E5
e (2.718)
pi (3.142)

Logic

or
and
= != <> > <
<= >=

Round round

Binary
+ - mod
* / div
^

Help:Extension:ParserFunctions
From MediaWiki.org

The ParserFunctions extension provides ten additional parser functions to supplement the "magic words", which
are already present in MediaWiki. All the parser functions provided by this extension take the form:

{{ #functionname: argument 1 | argument 2 | argument 3 ... }}

Contents

1 #expr:
2 #if:
3 #ifeq:
4 #iferror:
5 #ifexpr:
6 #ifexist:
7 #rel2abs:
8 #switch:
9 #time:
10 #titleparts:
11 General points

11.1 Substitution
11.2 Tables
11.3 Stripping whitespace

12 See also

#expr:

This function evaluates a mathematical expression and returns the
calculated value.

{{#expr: expression }}

The available operators are listed to the right, in order of precedence. See
Help:Calculation for more details of the function of each operator. The
accuracy and format of the result returned will vary depending on the
operating system of the server running the wiki, and the number format
of the site language.

When evaluating using boolean algebra, zero evaluates to false and any
nonzero value, positive or negative, evaluates to true:

{{#expr: 1 and -1 }} → 1

An empty input expression returns an empty string. Invalid expressions
return one of several error messages, which can be caught using the
#iferror: function:

Unary

not ceil
trunc floor
abs ln sin
cos tan acos
asin atan
e + -

{{#expr: }} →
{{#expr: 1+ }} → Expression error: Missing operand for +
{{#expr: 1 foo 2 }} → Expression error: Unrecognised
word "foo"

 Warning: Some expressions may invoke floating-point errors when
used with very large or very small numbers:

{{#expr: 20060618093259 mod 10000}} → 3259 in
most cases, but may occasionally give -6357. This varies
with the specification and configuration of the server
running the wiki. See bug 6356.

#if:

{{#if: test string | value if true | value if false }}

This function tests whether the first parameter is 'non-empty'. It evaluates to false if the test string is empty or
contains only whitespace characters (space, newline, etc).

{{#if: | yes | no}} → no
{{#if: string | yes | no}} → yes
{{#if: | yes | no}} → no
{{#if:

| yes | no}} → no

The test string is always interpreted as pure text, so mathematical expressions are not evaluated:

{{#if: 1==2 | yes | no}} → yes

Either or both the return values may be omitted:

{{#if: foo | yes }} → yes
{{#if: | yes }} →
{{#if: foo | | no}} →

See Help:Parser functions in templates for more examples of this parser function.

#ifeq:

This parser function compares two strings and determines whether they are identical.

{{#ifeq: string 1 | string 2 | value if true | value if false }}

If both strings are valid numerical values, the strings are compared numerically:

{{#ifeq: 01 | 1 | yes | no}} → yes
{{#ifeq: 0 | -0 | yes | no}} → yes

Otherwise the comparison is made as text; this comparison is case sensitive:

{{#ifeq: foo | bar | yes | no}} → no
{{#ifeq: foo | Foo | yes | no}} → no
{{#ifeq: "01" | "1" | yes | no}} → no

 Warning: Text inside <nowiki> tags is hashed within parser functions, resulting in errors:

{{#ifeq: <nowiki>foo</nowiki> | <nowiki>foo</nowiki> | yes | no}} → no

#iferror:

This function takes an input string and returns one of two results; the function evaluates to true if the input
string contains an HTML object with class="error", as generated by other parser functions such as #expr:,
#time: and #rel2abs:, template errors such as loops and recursions, and other 'failsoft' parser errors.

{{#iferror: test string | value if error | value if correct }}

One or both of the return strings can be omitted. If the correct string is omitted, the test string is returned
if it is not erroneous. If the error string is also omitted, an empty string is returned on an error:

{{#iferror: {{#expr: 1 + 2 }} | error | correct }} → correct
{{#iferror: {{#expr: 1 + X }} | error | correct }} → error
{{#iferror: {{#expr: 1 + 2 }} | error }} → 3
{{#iferror: {{#expr: 1 + X }} | error }} → error
{{#iferror: {{#expr: 1 + 2 }} }} → 3
{{#iferror: {{#expr: 1 + X }} }} →

#ifexpr:

This function evaluates a mathematical expression and returns one of two strings depending on the boolean
value of the result:

{{#ifexpr: expression | value if true | value if false }}

The expression input is evaluated exactly as for #expr: above, with the same operators being available. The
output is then evaluated as a boolean expression. This function is equivalent to one using #ifeq: and #expr:
only:

{{#ifeq: {{#expr: expression }} | 0 | value if false | value if true }}

An empty input expression evaluates to false:

{{#ifexpr: | yes | no}} → no

Either or both the return values may be omitted; no output is given when the appropriate branch is left empty:

{{#ifexpr: 1 > 0 | yes }} → yes
{{#ifexpr: 1 < 0 | yes }} →
{{#ifexpr: 1 > 0 | | no}} →
{{#ifexpr: 1 > 0 }} →

#ifexist:

This function takes an input string, interprets it as a page title, and returns one of two values depending on
whether or not the page exists on the local wiki.

{{#ifexist: page title | value if exists | value if doesn't exist }}

The function evaluates to true if the page exists, whether it contains content, is visibly blank (contains
meta-data such as category links or magic words, but no visible content), is blank, or is a redirect. Only pages

that are redlinked evaluate to false, including if the page used to exist but has been deleted.

{{#ifexist: Help:Extension:ParserFunctions | exists | doesn't exist }} → exists
{{#ifexist: XXXHelp:Extension:ParserFunctionsXXX | exists | doesn't exist }} →
doesn't exist

The function evaluates to true for system messages that have been customised, and for special pages that are
defined by the software.

{{#ifexist: Special:Watchlist | exists | doesn't exist }} → exists
{{#ifexist: Special:CheckUser | exists | doesn't exist }} → exists (because the CheckUser
extension is installed on this wiki)
{{#ifexist: MediaWiki:Copyright | exists | doesn't exist }} → exists (because
MediaWiki:Copyright has been customised)

#ifexist: is considered an "expensive parser function", only a limited number of which can be included on
any one page (including functions inside transcluded templates). When this limit is exceeded, the page is
categorised into Category:Pages with too many expensive parser function calls, and any further #ifexist:
functions automatically return false, whether the target page exists or not.

Tip for wiki admins: Configure the maximum number of allowed expensive parser functions using the
$wgExpensiveParserFunctionLimit variable.

If a page checks a target using #ifexist:, then that page will appear in the Special:WhatLinksHere list for the
target page. So if the code {{#ifexist:Foo}} were included live on this page
(Help:Extension:ParserFunctions), Special:WhatLinksHere/Foo will list Help:Extension:ParserFunctions.

On wikis using a shared media repository, #ifexist: can be used to check if a file has been uploaded to the
repository, but not to the wiki itself:

{{#ifexist: File:Example.png | exists | doesn't exist }} → doesn't exist
{{#ifexist: Image:Example.png | exists | doesn't exist }} → doesn't exist
{{#ifexist: Media:Example.png | exists | doesn't exist }} → exists

If a local description page has been created for the file, the result is exists for all of the above.

#rel2abs:

This function converts a relative file path into an absolute filepath.

{{#rel2abs: path }}
{{#rel2abs: path | base path }}

Within the path input, the following syntax is valid:

. → the current level

.. → "go up one level"
/foo → "go down one level into the subdirectory /foo"

If the base path is not specified, the full page name of the page will be used instead:

{{#rel2abs: ./quok | Help:Foo/bar/baz }} → Help:Foo/bar/baz/quok
{{#rel2abs: ../quok | Help:Foo/bar/baz }} → Help:Foo/bar/quok
{{#rel2abs: ../. | Help:Foo/bar/baz }} → Help:Foo/bar

Invalid syntax, such as /. or /./, is ignored. Since no more than two consecutive full stops are permitted,

sequences such as these can be used to separate successive statements:

{{#rel2abs: ../quok/. | Help:Foo/bar/baz }} → Help:Foo/bar/quok
{{#rel2abs: ../../quok | Help:Foo/bar/baz }} → Help:Foo/quok
{{#rel2abs: ../../../quok | Help:Foo/bar/baz }} → quok
{{#rel2abs: ../../../../quok | Help:Foo/bar/baz }} → Error: Invalid depth in path:
"Help:Foo/bar/baz/../../../../quok" (tried to access a node above the root node)

#switch:

This function compares one input value against several test cases, returning an associated string if a match is
found.

{{#switch: comparison string
 | case = result
 | case = result
 | ...
 | case = result
 | default result
}}

The default result is returned if no case string matches the comparison string. In this syntax, the default
result must be the last parameter and must not contain a raw equals sign. Alternatively, the default result may be
explicitly declared with a case string of "#default"; default results declared in this way may be placed
anywhere within the function:

{{#switch: test | foo = Foo | #default = Bar | baz = Baz }} → Bar

If default parameter is entirely omitted, an empty string will be returned as default result. It is possible to have
'fall through' values, where several case strings return the same result string. This minimises duplication.

{{#switch: comparison string
 | case1 = result1
 | case2
 | case3
 | case4 = result2
 | case5 = result3
 | case6
 | case7 = result4
 | default result
}}

Here cases 2, 3 and 4 all return result2; cases 6 and 7 both return result4

As with #ifeq:, the comparison is made numerically if both the comparison string and the case string being
tested are numeric; or as case-sensitive string otherwise. A case string may be empty:

{{#switch: | = Nothing | foo = Foo | Something }} → Nothing

Once a match is found, subsequent cases are ignored:

{{#switch: b | f = Foo | b = Bar | b = Baz | }} → Bar

 Warning: "Case" strings cannot contain raw equals signs:

{{#switch: 1=2 | 1=2 = raw | 1<nowiki>=</nowiki>2 = nowiki | 1=2 = html |
foo }} → foo

Code Description Current output

Year

Y 4-digit year. 2009

y 2-digit year. 09

L 1 or 0 whether it's a
leap year or not 0

o ¹ ISO-8601 year
number. ² 2009 ³

¹ Requires PHP 5.1.0 and newer and rev:45208
² This has the same value as Y, except that if the ISO week
number (W) belongs to the previous or next year, that year
is used instead.
³ Will output literal o if ¹ not fulfilled

Month

n Month index, not
zero-padded. 6

m Month index,
zero-padded. 06

M
An abbreviation of
the month name, in
the site language.

Jun

F The full month name
in the site language. June

Week

W ISO 8601 week
number, zero-padded. 23

Day

j Day of the month, not
zero-padded. 5

d Day of the month,
zero-padded. 05

z Day of the year
(January 1 = 0) 155

D

An abbreviation for
the day of the week.
Rarely
internationalised.

Fri

l
The full weekday
name. Rarely
internationalised.

Friday

N ISO 8601 day of the
week. 5

w
number of the day of
the week (Monday =
1).

5

#time:

This parser function takes a date and/or time construct and
formats it according to the syntax given. A date/time object
can be specified; the default is the value of the magic word
{{CURRENTTIMESTAMP}} – that is, the time the page was
last rendered into HTML.

{{#time: format string }}
{{#time: format string | date/time object
}}

The list of accepted formatting codes is given in the table to
the right. Any character in the formatting string that is not
recognised is passed through unaltered. There are also two
ways to escape characters within the formatting string:

A backslash followed by a formatting character is
interpreted as a single literal character

1.

characters enclosed in double quotes are considered
literal characters, and the quotes are removed

2.

In addition, the digraph xx is interpreted as a single literal
"x".

{{#time: Y-m-d }} → 2009-06-05
{{#time: [[Y]] m d }} → 2009 06 05
{{#time: [[Y (year)]] }} → 2009 (09epmFri,
05 Jun 2009 15:12:53 +0000)
{{#time: [[Y "(year)"]] }} → 2009 (year)
{{#time: i's" }} → 12'53"

The date/time object can be in any format accepted by
PHP's strtotime() (http://uk3.php.net/manual
/en/function.strtotime.php) function. Both absolute (eg 20
December 2000) and relative (eg +20 hours) times are
accepted.

 Warning: The range of acceptable input is January 1
0100 → December 31 9999. Values outside
this range will be misinterpreted:

{{#time: d F Y | 15 April 0099 }} →
15 April 1999

{{#time: d F Y | 15 April 10000 }}
→ Error: invalid time

Full or partial absolute dates can be specified; the function
will 'fill in' parts of the date that are not specified using the
current values:

{{#time: Y | January 1 }} → 2009

A four-digit number is interpreted as hours and minutes if
possible, and otherwise as year:

Hour

a

"am" during the
morning (00:00:00 →
11:59:59), "pm"
otherwise (12:00:00
→ 23:59:59)

pm

A
Uppercase version of
a above. PM

g
Hour in 12-hour
format, not
zero-padded.

3

h Hour in 12-hour
format, zero-padded. 03

G
Hour in 24-hour
format, not
zero-padded.

15

H Hour in 24-hour
format, zero-padded. 15

Minutes and seconds

i Minutes past the
hour, zero-padded. 12

s Seconds past the
minute, zero-padded. 53

U
Seconds since
January 1 1970
00:00:00 GMT.

1244214773

Miscellaneous

L
1 if this year is a leap
year in the Gregorian
calendar, 0 otherwise

0

t Number of days in
the current month. 30

c
ISO 8601 formatted
date, equivalent to
Y-m-dTH:i:s+00:00.

2009-06-05T15:12:53+00:00

r

RFC 2822 formatted
date, equivalent to D,
j M Y H:i:s +0000,
with weekday name
and month name not
internationalised.

Fri, 05 Jun 2009 15:12:53

+0000

Non-Gregorian calendars

Iranian

xij Day of the month 15

xiF Full month name Khordad

xin Month index 3

xiY Full year 1388

Hebrew

{{#time: Y m d H:i:s | 1959 }} → 2009 06 05
19:59:00 Input is treated as a time rather than a year.

{{#time: Y m d H:i:s | 1960 }} → 1960 06 05
15:12:53 Since 19:60 is no valid time, 1960 is treated as a year.

A six-digit number is interpreted as hours, minutes and
seconds if possible, but otherwise as an error (not, for
instance, a year and month):

{{#time: Y m d H:i:s | 195909 }} → 2009 06 05
19:59:09 Input is treated as a time rather than a year+month code.

{{#time: Y m d H:i:s | 196009 }} → Error: invalid
time Although 19:60:09 is no valid time, 196009 is not interpreted
as September 1960.

 Warning: The fill-in feature is not consistent; some
parts are filled in using the current values,
others are not:

{{#time: Y m d H:i:s | January 1 }}
→ 2009 01 01 00:00:00

{{#time: Y m d H:i:s | February 2007
}} → 2007 02 01 00:00:00 Goes to the start of
the month, not the current day.

The function performs a certain amount of date
mathematics:

{{#time: d F Y | January 0 2008 }} → 31
December 2007
{{#time: d F | January 32 }} → 01 February
{{#time: d F | February 29 2008 }} → 29
February
{{#time: d F | February 29 2007 }} → 01
March

The function recognizes a large number of placenames and
time zones (full list):

{{#time:c|December 7, 1941 8:43AM HST }} →
1941-12-07T18:43:00+00:00
{{#time:c|December 8, 1941 12:30PM
Asia/Manila }} → 1941-12-08T04:30:00+00:00

xjj Day of the month 13

xjF Full month name Sivan

xjx Genitive form of the
month name Sivan

xjn Month number 9

xjY Full year 5769

Thai solar

xkY Full year 2552

Flags

xn
Format the next
numeric code as a
raw ASCII number.

In the Hindi
language,
{{#time:H, xnH}}
produces ०६, 06

xN
Like xn, but as a toggled flag, which
endures until the end of the string or until
the next appearance of xN in the string.

xr

Format the next
number as a roman
numeral. Only works
for numbers up to
3000.

{{#time:xrY}} →
MMIX

xg

Before a month flag (n, m, M, F), output the
genitive form if the site language
distinguishes between genitive and
nominative forms.

#titleparts:

This function separates a pagetitle into segments based on
slashes, then returns some of those segments as output.

{{#titleparts: pagename | number of
segments to return | first segment to
return }}

If the number of segments parameter is not specified, it
defaults to "0", which returns all the segments. If the first
segment parameter is not specified or is "0", it defaults to
"1":

{{#titleparts: Talk:Foo/bar/baz/quok }} →
Talk:Foo/bar/baz/quok
{{#titleparts: Talk:Foo/bar/baz/quok | 1 }}
→ Talk:Foo
{{#titleparts: Talk:Foo/bar/baz/quok | 2 }}
→ Talk:Foo/bar
{{#titleparts: Talk:Foo/bar/baz/quok | 2 |
2 }} → bar/baz

Negative values are accepted for both values. Negative
values for number of segments effectively 'strips'
segments from the end of the string. Negative values for
first segment translates to "add this value to the total
number of segments", loosely equivalent to "count from the
right":

{{#titleparts: Talk:Foo/bar/baz/quok | -1
}} → Talk:Foo/bar/baz
{{#titleparts: Talk:Foo/bar/baz/quok | | -1 }} → quok
{{#titleparts: Talk:Foo/bar/baz/quok | -1 | 2 }} → bar/baz Strips one segment from the end of the
string, then returns the second segment and beyond

The string is split a maximum of 25 times; further slashes are ignored. The string is also limited to 255
characters, as it is treated as a page title:

{{#titleparts: a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/aa/bb/cc/dd/ee |
1 | 25 }} → y/z/aa/bb/cc/dd/ee

General points

Substitution

Parser functions can be substituted by prefixing the hash character with subst::

{{subst:#ifexist: Help:Extension:ParserFunctions |
[[Help:Extension:ParserFunctions]] | Help:Extension:ParserFunctions }} → the code
[[Help:Extension:ParserFunctions]] will be inserted in the wikitext since the page
Help:Extension:ParserFunctions exists.

 Warning: The results of substituted parser functions are undefined if the expressions contain unsubstituted
volatile code such as variables or other parser functions. For consistent results, all the volatile
code in the expression to be evaluated must be substituted. See Help:Substitution.

