Aproximace

Z Multimediaexpo.cz

Verze z 14. 8. 2022, 14:51; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Aproximace (z lat. ad a proximus, blízký) znamená přiblížení; odtud přídavné jméno aproximativní, přibližný.

Obsah

V matematice a geometrii

V matematice znamená aproximace přibližnou hodnotu čísla nebo jednu z možných hodnot čísla, nebo také nahrazení čísla vhodným číslem blízkým. V geometrii se jedná o proložení několika bodů křivkou, přičemž není nutné, aby aproximační křivka přesně procházela zadanými body. (Na rozdíl od interpolace.)

Důvody aproximace

  • příliš náročný výpočet funkce (složitý funkční předpis, implicitně zadané funkce, …)
  • potřeba výpočtu dalších charakteristických funkcí (derivace, integrál, …)

Příklad

Např. Ludolfovo číslo lze za určitých okolností nahradit (aproximovat) hodnotou 227. Aproximace čísla \(\pi\) je tedy 227.

Přibližné vztahy využívající Taylorova rozvoje

Mnohé aproximace jsou založeny na rozvoji dané funkce v Taylorovu řadu a následném zanedbání vyšších členů rozvoje. Přesnost aproximace pak souvisí s počtem členů, které jsou použity. Mezi často používané přibližné vztahy patří např.

  • \(\mathrm{e}^{\pm x} \approx 1 \pm x\) (pro \(x\) blízké nule, příklad v článku Linearizace)
  • \(\ln(1 \pm x) \approx \pm x\) (pro \(x\) blízké nule)
  • Je-li absolutní hodnota proměnných \(x_1, x_2, ..., x_n, y_1, y_2, ..., y_n\) blízká nule, pak
\(\frac{(1\pm x_1)(1\pm x_2)\cdots(1\pm x_n)}{(1\pm y_1)(1\pm y_2)\cdots(1\pm y_n)} \approx 1 \pm x_1 \pm x_2 \pm \cdots \pm x_n \mp y_1 \mp y_2 \mp \cdots \mp y_n\)

Speciálními případy jsou pak vztahy

\((1\pm x_1)(1\pm x_2)\cdots(1\pm x_n) \approx 1\pm x_1 \pm x_2 \pm \cdots \pm x_n\)
\(\frac{1}{(1\pm y_1)(1\pm y_2)\cdots(1\pm y_n)} \approx 1 \mp y_1 \mp y_2 \mp \cdots \mp y_n\)
  • Z předchozích vztahů lze pro \(n\)-tou mocninu získat vztah (stejný vztah lze získat z binomické věty zanedbáním členů obsahujících vyšší mocniny x)
\({(1\pm x)}^n \approx 1 \pm nx\)
  • Pro \(n\)-tou odmocninu lze nalézt přibližný výraz
\(\sqrt[n]{1\pm x} \approx 1\pm \frac{x}{n}\)
  • Pro dvě kladná a blízká čísla \(x\) a \(y\) taková, že čtverec jejich rozdílu \({(x-y)}^2\) lze zanedbat proti čtverci jejich součtu \({(x+y)}^2\), lze psát
\({(x+y)}^2 \approx 4xy\)
\(\sqrt{xy} \approx \frac{x+y}{2}\)

Přibližné výrazy goniometrických funkcí

Pro malý úhel \(\alpha\neq 0\) a libovolný úhel \(\beta\) lze pro goniometrické funkce použít následující přibližné vztahy.

  • \(\sin\alpha \approx \alpha\)

s relativní chybou menší než \(0,1%\) pro \(|\alpha|<0,08\,\mbox{rad}\) neboli \(4,5^\circ\). Přesnějším přiblížením je

\(\sin\alpha\approx\alpha - \frac{\alpha^3}{6}\)

s relativní chybou menší než \(10^{-5}\) pro \(|\alpha|<0,25\,\mbox{rad}\) neboli \(14^\circ\).

  • \(\cos\alpha \approx 1\)

s relativní chybou menší než \(0,1%\) pro \(|\alpha|<0,04\,\mbox{rad}\) neboli \(2,3^\circ\). Přesnějším přiblížením je

\(\cos\alpha\approx 1 - \frac{\alpha^2}{2}\)

s relativní chybou menší než \(10^{-4}\) pro \(|\alpha|<0,25\,\mbox{rad}\) neboli \(14^\circ\).

  • \(\operatorname{tg}\alpha\approx\alpha\)

s relativní chybou menší než \(0,1%\) pro \(|\alpha|<0,06\,\mbox{rad}\) neboli \(3,4^\circ\). Přesnějším přiblížením je

\(\operatorname{tg}\alpha\approx\alpha+\frac{\alpha^3}{3}\)

s relativní chybou menší než \(5\cdot{10}^{-4}\) pro \(|\alpha|<0,25\,\mbox{rad}\) neboli \(14^\circ\).

  • \(\alpha\sin\alpha\approx 1\)

s relativní chybou menší než \(0,1%\) pro \(|\alpha|<0,017\,\mbox{rad}\) neboli \(1,008^\circ\).

  • \(\sin(\beta\pm\alpha)\approx\sin\beta\pm\alpha\cos\beta\)
  • \(\cos(\beta\pm\alpha)\approx\cos\beta\mp\alpha\sin\beta\)
  • \(\operatorname{tg}(\beta\pm\alpha)\approx\operatorname{tg}\beta\pm\alpha\cos{2\beta}\)
  • \(\operatorname{cotg}(\beta\pm\alpha)\approx\operatorname{cotg}\beta\mp\alpha\sin{2\beta}\)

Související články