Laminární proudění

Z Multimediaexpo.cz

Laminární proudění (na obrázku dole) a turbulentní proudění (nahoře) kolem trupu ponorky

Laminární proudění je takové proudění vazké kapaliny, při kterém jsou proudnice rovnoběžné a nemísí se. Částice kapaliny se pohybují vedle sebe jakoby ve vrstvách - „destičkách“ (destička = lat. lamina), které se vzájemně nepromíchávají. Odtud také laminární neboli vrstevnaté proudění. Mezi jednotlivými vrstvami se předpokládá existence vnitřního tření a platnost vztahu Newtonova zákona viskozity. Laminární proudění je tedy proudění kapaliny s vnitřním třením, které není potenciálové. Laminární proudění lze použít jako vhodnou aproximaci proudění reálných kapalin při malých rychlostech.

Obsah

Ustálené proudění v úzké trubici

Proudění vazké kapaliny v úzké trubici lze při nízkých rychlostech považovat za laminární.

Rychlostní profil

Soubor:Laminarni proudeni.png
Schéma k výpočtu rychlosti laminárního proudění

Uvažujme v trubici o poloměru <math>r</math> malý válec kapaliny o poloměru <math>x</math> a délce <math>\Delta l</math>. Na vstupní průřez tohoto válce působí tlak <math>p_1</math> a na výstupní průřez tlak <math>p_2</math>. Tlakový rozdíl na délce <math>\Delta l</math> má hodnotu <math>\Delta p=p_1-p_2</math>. Tlaková síla, která na válec působí ve směru toku, je

<math>F = \pi x^2\Delta p</math>

Tato síla odpovídá odporu kapaliny proti proudění. Tento odpor je způsoben vnitřním tření mezi pláštěm válce a kapalinou, která jej obklopuje, přičemž jej lze vyjádřit jako

<math>F_t = 2\pi x\Delta l\tau</math>,

kde <math>\tau</math> je tečné napětí. Při ustáleném proudění musí být <math>F</math> a <math>F_t</math> v rovnováze. Z předchozích vztahů tedy dostaneme

<math>\pi x^2\Delta p = -\pi x\Delta l\eta \frac{\mathrm{d}v}{\mathrm{d}x}</math>

Odtud po úpravě a integraci dostaneme pro rychlostní profil (tedy rozložení rychlostí v trubici) výraz

<math>v = -\frac{1}{4\eta}\frac{\Delta p}{\Delta l}x^2 + k</math>,

kde <math>k</math> je integrační konstanta, kterou určíme z podmínky, že na vnitřní straně trubice je rychlost nulová, tzn. <math>v=0</math> pro <math>x=r</math>. Po dosazení úpravě dostaneme

<math>v = \frac{1}{4\eta}\frac{\mathrm{d}p}{\mathrm{d}l}(r^2-x^2)</math>

Podle tohoto vztahu je tedy závislost rychlosti <math>v</math> na <math>x</math> (tedy na vzdálenosti od středu trubice) parabolická.

Hagen-Poiseuilleův zákon

Ze znalosti rozložení rychlostí je možné spočítat objemový tok <math>Q_v</math>. Rychlost <math>v</math> je v určité vzdálenosti <math>x</math> od osy trubice konstantní. Plochou mezikruží ve vzdálenosti <math>x</math> a šířce <math>\mathrm{d}x</math> proteče za časovou jednotku kapalina o objemu

<math>\mathrm{d}Q_v = 2\pi xv\mathrm{d}x = \frac{\pi}{2\eta}\frac{\Delta p}{\Delta l}(r^2-x^2)x\mathrm{d}x</math>

Integrací přes celý průřez trubice dostaneme

<math>Q_v = \frac{\pi r^4}{8\eta}\frac{\Delta p}{\Delta l}</math>

Tento vztah je matematickým vyjádřením tzv. Hagen-Poiseuilleova zákona, který zní:

Objemový tok viskozní tekutiny při laminárním proudění trubicí kruhového průřezu je přímo úměrný tlakovému spádu <math>\frac{\Delta p}{\Delta l}</math> a čtvrté mocnině poloměru trubice a je nepřímo úměrný dynamické viskozitě <math>\eta</math>.

Maximální a průměrná rychlost proudění

Maximální rychlost, kterou se tekutina při laminárním proudění trubicí pohybuje má hodnotu

<math>v_\mbox{max} = \frac{1}{4\eta}\frac{\Delta p}{\Delta l}r^2</math>

a nachází se na ose trubice (<math>x=0</math>). Průměrnou rychlost, kterou kapalina protéká trubicí při laminárním proudění můžeme určit jako podíl objemového toku a celkového průřezu trubice (<math>S=\pi r^2</math>), tzn.

<math>v_s = \frac{Q_v}{S} = \frac{1}{8\eta}\frac{\Delta p}{\Delta l}r^2 = \frac{1}{2}v_\mbox{max}</math>

Vlastnosti

Laminární proudění je vírové, neboť část kapaliny, která se nachází mezi dvěma vrstvami s různými rychlostmi má tendenci se otáčet. Vírová vlákna mají tvar soustředných kružnic, jejichž středy leží na ose trubice. O vírové povaze laminárního proudění se lze přesvědčit výpočtem podmínky pro potenciálové proudění po libovolné uzavřené dráze. Zvolme dva body <math>A, B</math> na ose trubice ve vzdálenosti <math>s</math> a dva body <math>C, D</math> na okraji trubice ve stejné vzdálenosti, a to tak, že <math>D</math> se nachází na stejném řezu trubicí jako <math>A</math> a bod <math>C</math> se nachází na stejném řezu jako <math>B</math>. Vzhledem k tomu, že rychlost na okraji trubice je nulová a mezi body <math>A,D</math> a <math>B,C</math> je vektor rychlosti kolmý na dráhu, dostaneme

<math>\oint v\mathrm{d}s = \int_A^B v\mathrm{d}s = v_\mbox{max}s</math>

Podobně lze zjistit, že pro jakoukoli jinou uzavřenou dráhu (která není souměrná podle osy trubce) by uvedený integrál byl nenulový. To znamená, že proudění není potenciálové a také, že <math>\operatorname{rot}v</math> je různé od nuly. Jednotlivé částice kapaliny mají tedy snahu se otáčet, a proto je proudění vířivé. Tlakový spád <math>\frac{\Delta p}{\Delta l}</math> je mírou odporu kapaliny proti proudění, tzn.

<math>F\sim\frac{\Delta p}{\Delta l}\sim v_s</math>

Při malé rychlosti proudění kapaliny se víry nemohou výrazně rozvinout a proudění probíhá tak, jako by se skládalo z nekonečně tenkých vírových vláken ve tvaru koncentrických kružnic. Při zvýšení rychlosti proudění však víry začnou proudění ovlivňovat výrazně a laminární proudění přejde v proudění turbulentní. Jako kritérium pro odlišení laminárního proudění od proudění turbulentního lze použít Reynoldsovo číslo.

Související články

Externí odkazy