Obecná teorie relativity

Z Multimediaexpo.cz

Soubor:Spacetime curvature.png
Dvoudimenzionální znázornění zakřivení časoprostoru. Přítomnost hmoty mění geometrii časoprostoru a tato (zakřivená) geometrie je chápána jako gravitace.

Obecná relativita nebo obecná teorie relativity je základní fyzikální teorie gravitace formulovaná Albertem Einsteinem, která opravila a rozšířila Newtonův koncept gravitace, především v makroskopickém měřítku planet a hvězd. Obecnou relativitu lze chápat také jako rozšíření speciální relativity. Starší teorie poskytuje správný popis elektrodynamiky a šíření světla v inerciálních vztažných soustavách a opravuje nepřesnosti Newtonovy mechaniky při vysokých rychlostech. Obecná relativita navíc hraje mezi fyzikálními teoriemi jedinečnou roli v tom smyslu, že vykládá gravitační pole jako geometrický fenomén. Přesněji řečeno předpokládá, že libovolný objekt s vlastní hmotností zakřivuje „prostor“, ve kterém se nachází, a toto zakřivení se projevuje jako gravitace. Abychom pochopili tuto rovnost, není dobré uvažovat, že by gravitace způsobovala nebo byla způsobována zakřivením časoprostoru, ale spíše, že gravitace je zakřivení časoprostoru. Teorie od svého formulování v roce 1915 dodnes přežila všechny experimenty pokoušející se o její vyvrácení. Obecná teorie relativity bývá také označována jako Einsteinova gravitační teorie.

Obsah

Základní principy

Obecnou teorii relativity lze postavit na dvou postulátech:

Tyto postuláty bývají také formulovány v jiné podobě:

Einsteinovy rovnice gravitačního pole

Základní vztah mezi zakřivením časoprostoru a rozložením energie a hybnosti vyjadřují Einsteinovy rovnice gravitačního pole. Rovnice vychází z toho, že fyzikálnímu poli lze přiřadit symetrický tenzor energie a hybnosti \(T^{\iota\kappa}\). Dále se v teorii relativity předpokládá, že gravitační pole v daném bodě \(x^\lambda\) je možné popsat deseti funkcemi \(g^{\iota\kappa}(x^\lambda)\), \(\iota,\kappa=0,1,2,3\) (viz metrický tenzor). Einsteinovy rovnice je možné zapsat ve tvaru

\(G^{\iota\kappa}(g_{\mu\nu,\pi \rho}, g_{\mu\nu,\pi}, g_{\mu\nu})=\varkappa T^{\iota\kappa}(g_{\mu\nu,\rho}, g_{\mu\nu},\varphi) \),

kde \(T^{\iota\kappa}\) je tenzor energie a hybnosti, \(G^{\iota\kappa}\) je Einsteinův tenzor a symbol \(\phi\) je označením pro všechna ostatní fyzikální pole čistě negeometrické povahy (včetně jejich derivací), jako je např. hmotný prach, tekutina nebo elektromagnetické pole. \(\varkappa\) je Einsteinova gravitační konstanta

\(\varkappa = \frac{8\pi G}{c^4}\).

V tomto vzorci je \(G\) Newtonova gravitační konstanta a \(c\) je rychlost světla. O Einsteinovu tenzoru \(G^{\iota\kappa}\) lze předpokládat, že závisí pouze na metrickém tenzoru a jeho parciálních derivacích podle \(x^\lambda\) nejvýše do druhého řádu. Obvykle se také požaduje, aby \(G^{\iota\kappa}\) záviselo na druhých derivacích metrického tenzoru lineárně, což lze zapsat jako

\(\frac{\part^2G^{\iota\kappa}}{\part g_{\rho\sigma,\tau\mu}\part g_{\alpha\beta,\gamma\delta}} = 0\).

Zákon zachování energie a hybnosti omezuje pravou stranu Einsteinových rovnic podmínkou \(T^{\iota\kappa}_{;\kappa}=0\). Divergence levé strany Einsteinových rovnic tedy musí být identicky nulová, tzn. \(G^{\iota\kappa}_{;\iota}=0\). Lze ukázat, že pokud má \(G^{\iota\kappa}\) záviset pouze na metrickém tenzoru a jeho derivacích, pak je tvar \(G^{\iota\kappa}\) určen až na konstanty \(a_1, a_2, a_3\) jako

\(G^{\iota\kappa} = a_1R^{\iota\kappa} + a_2Rg^{\iota\kappa} + a_3g^{\iota\kappa}\)

kde \(R^{\iota\kappa}\) je Ricciho tenzor a \(R\) je skalární křivost. Srovnáním tohoto vztahu se zúženými formami Riemannova tenzoru lze dojit k závěru, že můžeme položit \(a_1=-1\) a \(a_2=\frac{1}{2}\). Konstanta \(a_3\) zůstává neurčena. Zavedeme-li novou konstantu \(\Lambda=-a_3\), můžeme rovnici popisující gravitační zákon vyjádřit jako

\(R^{\iota\kappa} - \frac{1}{2}Rg^{\iota\kappa} - \Lambda g^{\iota\kappa} = \varkappa T^{\iota\kappa}\)

Konstanta \(\Lambda\) se označuje jako kosmologická konstanta. Konstanta \(\Lambda\) hraje úlohu pouze v kosmologických měřítkách. Pokud řešíme problémy, které nejsou kosmologického charakteru, klademe \(\Lambda=0\), tzn.

\(R^{\iota\kappa} - \frac{1}{2}Rg^{\iota\kappa} =\varkappa T^{\iota\kappa}\)

Zúžením této dostaneme skalární rovnici

\(R=\varkappa T\)

S pomocí této rovnice lze předchozí rovnici upravit na

\(R^{\iota\kappa} = \varkappa(T^{\iota\kappa}-\frac{1}{2}Tg^{\iota\kappa})\)

V prázdném prostoru, tedy v dokonalém vakuu, platí

\(T^{\iota\kappa}=0\)

V takovém případě platí \(R=0\) Odtud plyne, že v prázdném prostoru se rovnice gravitačního pole redukují na tvar

\(R^{\iota\kappa} = 0\)

Einsteinovy rovnice gravitačního pole, představují systém deseti nelineárních parciálních diferenciálních rovnic. Tyto rovnice tvoří základ obecné teorie relativity. Vzhledem k tomu, že tyto rovnice jsou nelineární, neplatí v obecné teorii relativity princip superpozice.

Časoprostor jako zakřivená lorentzovská varieta

V obecné relativitě se používá širší zavedení časoprostoru, než ve speciální teorii relativity. V obecné teorii relativity je časoprostor:

Zakřivení časoprostoru (způsobené přítomností hmoty a hybnosti) si lze názorně představit např. následujícím způsobem. Umístíme-li těžký předmět (např. bowlingovou kouli) na trampolínu, vznikne v ní prohlubeň, která povrch trampolíny zakřivuje. Obdobně přítomnost velkého množství hmoty zakřivuje ve svém blízkém okolí časoprostor, jak ilustruje obrázek výše. Je-li přitom těleso hmotnější, zakřivuje časoprostor ve větším rozsahu a více (srovnejme v naší analogii s trampolínou např. zakřivení způsobené bowlingovou koulí a tenisovým míčkem). Obdobně zakřivení závisí na hustotě (kulička ze železa zakřiví trampolínu více než stejně velká kulička z plastu.) Pokud cvrnkneme do takto vzniklého důlku malou kuličku správnou rychlostí, bude v něm „obíhat“ kolem bowlingové koule. To je analogické s obíháním planet v gravitačním poli. Je zde rovněž patrná skutečnost, že obecná relativita neuvažuje s působením síly na dálku, jako u Newtonovy teorie gravitace, ale že testovací částice reaguje na zakřivení časoprostoru tak, aby se pohybovala po nejpřímější dráze (specielně skutečnost, že je dráha nejpřímější z analogie vidět není, to je pravda jen v časoprostoru se smíšenou signaturou metriky) a zakřivení časoprostoru zpětně reaguje na rozložení hmoty.

Experimentální ověření obecné teorie relativity

Související články

Externí odkazy