V pátek 26. dubna 2024 úderem 22 hodiny začíná naše nová
a opravdu velká série soutěží o nejlepší webovou stránku !!
Proto neváhejte a začněte hned zítra soutěžit o lákavé ceny !!

Cauchyovská posloupnost

Z Multimediaexpo.cz

Cauchyovská posloupnost (také bolzanovská posloupnost) je taková posloupnost prvků metrického prostoru, jejíž členy se k sobě blíží libovolně blízko. Každá konvergentní posloupnost je nutně cauchyovská. Pomocí cauchyovské posloupnosti se definuje úplný metrický prostor. V něm cauchyovské posloupnosti a konvergentní posloupnosti splývají. To pak přináší výhodu při určování, zda posloupnost má limitu, neboť stačí ověřit, zda je cauchyovská, bez nutnosti samotnou limitu zjišťovat, jako např. u Banachovy věty o pevném bodě.

Definice

V metrickém prostoru M s metrikou d je posloupnost \(( x_1, x_2, \ldots )\) cauchyovská, pokud pro ni platí tzv. Bolzanova-Cauchyho podmínka:

\(\forall \varepsilon > 0\; \exists n_0 \in \mathbb{N}\; \forall m, n \ge n_0: d(x_m, x_n) < \varepsilon\)

Příklady

  • Harmonická posloupnost \(\frac 1 n\) je cauchyovská.
  • Každá konvergentní posloupnost v metrickém prostoru je cauchyovská, tzn. Bolzanova-Cauchyho podmínka je nutná podmínka konvergence, nikoli však obecně postačující (viz příklad racionálních čísel). Metrický prostor \(\mathbb{A}\), v kterém má každá cauchyovská posloupnost limitu, která náleží do tohoto metrického prostoru \(\mathbb{A}\), se nazývá úplný metrický prostor.
  • Posloupnost racionálních čísel \((1 + 1/n)^n\) je cauchyovská, ale její limita je Eulerovo číslo, což je číslo iracionální. Prostor racionálních čísel (s eukleidovskou metrikou) proto není úplný metrický prostor.
  • Každá cauchyovská posloupnost je omezená. Z Bolzano-Weierstrassovy věty pak plyne, že každá cauchyovská posloupnost reálných čísel je už konvergentní, tzn. že prostor reálných čísel je úplný.