Homeomorfismus
Z Multimediaexpo.cz
Homeomorfismus (z řeckého homeos = stejný, morphe = tvar) je vzájemně jednoznačné zobrazení mezi topologickými prostory, které zachovává topologické vlastnosti. Homeomorfismus je tedy jiný název pro izomorfismus topologických prostorů. Dva prostory, mezi kterými je homeomorfismus se nazývají homeomorfní. Z pohledu topologie jsou stejné (mají stejné vlastnosti).
Definice
Zobrazení se nazývá homeomorfismus, pokud
- je bijektivní
- je spojité
- Inverzní zobrazení
je spojité.
Pokud existuje homeomorfismus na
, jsou prostory
a
homeomorfní. Homeomorfismy jsou ekvivalence na třídách topologických prostorů.
Příklady
- Identické zobrazení na topologickém prostoru je vždy spojité a proto je homeomorfismem. Jiná je však situace, pokud na jedné množině uvažujeme dvě různé topologie (tedy dva různé seznamy otevřených množin). Například na reálných číslech můžeme uvažovat obvyklou topologii a diskrétní topologii (v níž je každá množina otevřená i uzavřená). Identické zobrazení z topologického prostoru (A, T1) do (A, T2) je homeomorfismem, právě když T1 = T2, tedy pokud T1 a T2 označují tutéž topologickou strukturu.
- Otevřený interval (-1, 1) je homeomorfní množině reálných čísel, příkladem je homeomorfismus
.
Související články
200 sociálních sítí a dalších služeb ! |
---|
![]() |
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |