Norma (matematika)

Z Multimediaexpo.cz

Norma je funkce, která každému nenulovému vektoru přiřazuje kladné reálné číslo (tzv. délku nebo velikost), nulový vektor jako jediný má délku 0.

V případě seminormy se naopak připouští, aby i nenulovým vektorům byla přiřazena nulová délka.

Obsah

Definice

Nechť V je vektorový prostor nad nějakým podtělesem F tělesa komplexních čísel a p je reálná funkce definovaná na V. Funkce p je seminorma na V, jestliže je

  • pozitivně homogenní: p(a v) = |a| p(v), pro aF a vV;
  • subaditivní: p(u + v) ≤ p(u) + p(v), pro u, vV.

Z předpokladu pozitivní homogenity plyne, že p(0) = 0 a následně ze subaditivity p(v) ≥ 0, pro všechna vV.

Norma je seminorma p, která je navíc pozitivně definitní:

  • p(v) = 0 právě tehdy, když v = 0.

Pro normu se namísto p(v) zpravidla používá označení ||v||.

Příklady

Eukleidovská norma

Na prostoru \(\mathbb{R}^n\) lze definovat tzv. eukleidovskou normu vektoru x = (x1, x2, ..., xn) jako

\(\|\mathbf{x}\| := \sqrt{x_1^2 + \cdots + x_n^2}.\)

Tato norma udává vzdálenost bodu x od počátku (což je důsledek Pythagorovy věty).

p-norma

Nechť p ≥ 1 je reálné číslo.

\(\|\textbf{x}\|_p := \left( \sum_{i=1}^n |x_i|^p \right)^\frac{1}{p}.\)

Eukleidovská norma je speciálním případem této normy (pro p = 2).

Maximová norma

\(\|\textbf{x}\|_\infty := \max \left(|x_1|, \ldots ,|x_n| \right).\)

Norma na prostoru se skalárním součinem

Skalární součin indukuje přirozeným způsobem normu

\(\|x\| := \sqrt{(x,x)}.\)

Pro normu indukovanou skalárním součinem platí Cauchyho–Schwarzova nerovnost

\( |(x,y)| \leq \|x\| \, \|y\|.\)

Vlastnosti

Ilustrace jednotkových kružnic v různých normách.

Tvar jednotkové kružnice (množiny vektorů velikosti 1) se liší v různých normách (viz ilustraci).

Normy ||•||α and ||•||β na vektorovém prostoru V se nazývají ekvivalentní, jestliže existují kladná reálná čísla C a D taková, že

\(C\|x\|_\alpha\leq\|x\|_\beta\leq D\|x\|_\alpha\)

pro všechna xV. Na vektorovém prostoru konečné dimenze jsou všechny normy ekvivalentní. Například normy ||•||1, ||•||2 a ||•|| jsou ekvivalentní na prostoru \(\mathbb{R}^n\):

\(\|x\|_2\le\|x\|_1\le\sqrt{n}\|x\|_2,\)
\(\|x\|_\infty\le\|x\|_2\le\sqrt{n}\|x\|_\infty,\)
\(\|x\|_\infty\le\|x\|_1\le n\|x\|_\infty.\)

Ekvivalentní normy indukují tutéž topologii. Jsou-li dány dvě ekvivalentní normy na jednom prostoru, pak je spojitost funkcí i konvergence posloupností z tohoto prostoru v obou normách stejná.

Konvexní, vyvážené, pohlcující množiny

Seminormy jsou úzce spjaty s konvexními, vyváženými, pohlcujícími množinami.
Nechť p je seminorma na vektorovém prostoru V, pak pro libovolný skalár α jsou množiny {x : p(x) < α} a {x : p(x) ≤ α} konvexní, vyvážené a pohlcující.

Obráceně, ke každé konvexní, vyvážené, pohlcující podmnožině C prostoru V existuje seminorma μC známá jako Minkowského funkcionál množiny C, definovaná

\(\mu_C(x) := \inf\{\alpha : \alpha > 0, x \in \alpha C\}.\)

Pro tuto seminormu platí

\(\{x : \mu_C(x) < 1\} \subseteq C \subseteq \{x : \mu_C(x) \leq 1\}.\)

Související články

Externí odkazy

Commons nabízí fotografie, obrázky a videa k tématu
Norma (matematika)