Vzdálenost bodu od přímky

Z Multimediaexpo.cz

Broom icon.png Tento článek potřebuje úpravy. Můžete Multimediaexpo.cz pomoci tím, že ho vylepšíte.
Jak by měly články vypadat, popisují stránky Vzhled a styl a Encyklopedický styl.
Broom icon.png

V rovině (v π 2)


Vzdálenost bodu A[xa, ya] od přímky p v rovině najdeme tak, že nejprve odhalíme souřadnice kolmého průmětu X bodu A na přímku p. Bod X je průsečíkem přímky p a přímky q, která prochází bodem A a je kolmá na p. Proto nejdřív musíme najít přímku q, pro kterou musí platit, že její směrový vektor je normálový vektor přímky p:
Rovnici přímky p upravíme na obecný tvar:

\(ax + by + c = 0\)

Z této rovnice získáme normálový vektor přímky p:

\(\mathbf{n} = (a;b)\)

Tento normálový vektor je směrovým vektorem přímky q, proto normálový vektor přímky q je:

\(\mathbf{u} = (-b;a)\)

Takže obecná rovnice přímky q má následující tvar:

\(-bx + ay + d = 0\)

Proměnnou d získáme dosazením souřadnic bodu A do rovnice:

\(d = bx_a - ay_a\)

Nyní už jen dořešíme soustavu dvou lineárních rovnic, ze které získáme souřadnice bodu X a tyto souřadnice dosadíme spolu se souřadnicemi bodu A do vzorečku pro vzdálenost dvou bodů v rovině:

\(\left| AX \right| = \sqrt{\left( x_a - x_x \right)^2 + \left( y_a - y_x \right)^2}\)

Tímto postupem lze získat obecný vzoreček pro vzdálenost bodu od přímky v rovině: \(v = \frac{\left|ax_a + by_a + c\right|}{\sqrt{a^2 + b^2}}\)

V prostoru (v π 3)


Postup v prostoru je analogický s tím v rovině. Pouze tentokrát nebudeme hledat průsečík přímky p a na ní kolmé přímky q, ale průsečík přímky p a roviny ρ, která je kolmá na p a leží v ní bod A. Rovnici roviny ρ získáme stejným postupem jako předtím, musíme mít pouze na paměti, že přímku v prostoru nelze určit jedinou lineární rovnicí. Vzoreček pro vzdálenost dvou bodů v prostoru je podobný jako v rovině, pouze přibude jeden výraz:

\(\left| AX \right| = \sqrt{\left( x_a - x_x \right)^2 + \left( y_a - y_x \right)^2 + \left( z_a - z_x \right)^2}\)