V pátek 26. dubna 2024 úderem 22 hodiny začíná naše nová
a opravdu velká série soutěží o nejlepší webovou stránku !!
Proto neváhejte a začněte hned zítra soutěžit o lákavé ceny !!

Minkowského prostor

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 3 mezilehlé verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Minkowského prostor|700}}
+
'''Minkowského prostor''' se používá k popisu [[časoprostor]]u ve [[speciální teorie relativity|speciální teorii relativity]]. Matematicky jde o 4-rozměrný [[reálné číslo|reálný]] lineární [[vektorový prostor]] se [[skalární součin|skalárním součinem]]. Změnu [[inerciální vztažná soustava|inerciální vztažné soustavy]] odpovídající [[Lorentzova transformace|Lorentzově transformaci]] lze chápat geometricky jako otáčení v Minkowského prostoru. Stejnou rotací přitom projdou [[čtyřvektor]]y všech fyzikálních veličin.
 +
== Složky vektoru ==
 +
Vektor v Minkowského prostoru  <big>\(\mathbf{a}=a^{\mu}\mathbf{e}_{\mu}\)</big> má 4 souřadnice
 +
:<big>\(a^\mu = \left( a^0, a^1, a^2, a^3 \right)\,.\)</big>
 +
První z nich nazýváme časová složka nebo časová komponenta <big>\(t\)</big>, ostatní tři odpovídají prostorovým souřadnicím <big>\(x,y,z\)</big>. Někdy se na časové ose používá jiné měřítko, což odpovídá konvenci měření času v sekundách a vzdálenosti v metrech. Přepočet mezi [[sekunda|sekundou]] a [[metr]]em je dán [[rychlost světla|rychlostí světla]] ve vakuu <big>\(c=299792458\ \mathrm{m.s^{-1}}\)</big>. V tomto článku předpokládáme na všech osách stejné měřítko, což odpovídá <big>\(c=1\)</big>. Vizte též [[přirozená soustava jednotek]].
 +
 +
== Skalární součin ==
 +
[[Skalární součin]] dvou vektorů v Minkowského prostoru (<big>\(\mathbf{a}=a^{\mu}\mathbf{e}_{\mu},\ \mathbf{b}=b^{\mu}\mathbf{e}_{\mu}\)</big> ) je definován vztahem
 +
:<big>\(\langle \mathbf{a},\mathbf{b} \rangle \equiv a_\mu b^\mu = \eta_{\mu \nu} a^\mu b^\nu = -a_0b_0+a_1b_1+a_2b_2+a_3b_3\,.\)</big>
 +
Jako v [[Eukleidovský prostor|eukleidovském prostoru]], dva vektory nazýváme kolmými (ortogonálními), jestliže jejich skalární součin je roven nule.
 +
 +
== Minkowského norma ==
 +
Norma vektoru v Minkowského prostoru má trochu jiné vlastnosti než [[Eukleidovská norma]], protože popisuje odlišnou geometrii. Předně, Minkowského norma není pozitivně definitní, může tedy nabývat i záporných hodnot. Je definována jako skalární součin vektoru se sebou samým.
 +
:<big>\(||\mathbf{a}||^2 =\langle \mathbf{a},\mathbf{a} \rangle  =-a_0^2+a_1^2+a_2^2+a_3^2\)</big>
 +
Vektor je nazýván jednotkovým, pokud platí <big>\(||\mathbf{a}||^2=\pm 1\)</big>.
 +
 +
== Báze ==
 +
Standardní bázi Minkowského prostoru tvoří 4 [[ortogonalita|ortogonální]] jednotkové vektory <big>\(\mathbf{e}_0,\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\)</big>, pro které platí
 +
:<big>\(-||\mathbf{e}_0||^2 = ||\mathbf{e}_1||^2 = ||\mathbf{e}_2||^2 = ||\mathbf{e}_3||^2 = 1\,.\)</big>
 +
Tuto podmínku lze stručně zapsat jako
 +
:<big>\(\langle \mathbf{e}_\mu, \mathbf{e}_\nu \rangle = \eta_{\mu\nu}\,,\)</big>
 +
kde <big>\(\eta\)</big> je diagonální matice
 +
:<big>\(\eta=\operatorname{diag}\left(-1,1,1,1\right)=\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}\,.\)</big>
 +
 +
== Související články ==
 +
* [[Vektorový prostor]]
 +
* [[Čtyřvektor]]
 +
* [[Lorentzova transformace]]
 +
 +
== Externí odkazy ==
 +
* {{MathWorld|id=MinkowskiSpace}}
 +
 +
 +
{{Článek z Wikipedie}}
[[Kategorie:Lineární algebra]]
[[Kategorie:Lineární algebra]]
[[Kategorie:Speciální teorie relativity]]
[[Kategorie:Speciální teorie relativity]]

Aktuální verze z 14. 8. 2022, 14:52

Minkowského prostor se používá k popisu časoprostoru ve speciální teorii relativity. Matematicky jde o 4-rozměrný reálný lineární vektorový prostor se skalárním součinem. Změnu inerciální vztažné soustavy odpovídající Lorentzově transformaci lze chápat geometricky jako otáčení v Minkowského prostoru. Stejnou rotací přitom projdou čtyřvektory všech fyzikálních veličin.

Obsah

Složky vektoru

Vektor v Minkowského prostoru \(\mathbf{a}=a^{\mu}\mathbf{e}_{\mu}\) má 4 souřadnice

\(a^\mu = \left( a^0, a^1, a^2, a^3 \right)\,.\)

První z nich nazýváme časová složka nebo časová komponenta \(t\), ostatní tři odpovídají prostorovým souřadnicím \(x,y,z\). Někdy se na časové ose používá jiné měřítko, což odpovídá konvenci měření času v sekundách a vzdálenosti v metrech. Přepočet mezi sekundou a metrem je dán rychlostí světla ve vakuu \(c=299792458\ \mathrm{m.s^{-1}}\). V tomto článku předpokládáme na všech osách stejné měřítko, což odpovídá \(c=1\). Vizte též přirozená soustava jednotek.

Skalární součin

Skalární součin dvou vektorů v Minkowského prostoru (\(\mathbf{a}=a^{\mu}\mathbf{e}_{\mu},\ \mathbf{b}=b^{\mu}\mathbf{e}_{\mu}\) ) je definován vztahem

\(\langle \mathbf{a},\mathbf{b} \rangle \equiv a_\mu b^\mu = \eta_{\mu \nu} a^\mu b^\nu = -a_0b_0+a_1b_1+a_2b_2+a_3b_3\,.\)

Jako v eukleidovském prostoru, dva vektory nazýváme kolmými (ortogonálními), jestliže jejich skalární součin je roven nule.

Minkowského norma

Norma vektoru v Minkowského prostoru má trochu jiné vlastnosti než Eukleidovská norma, protože popisuje odlišnou geometrii. Předně, Minkowského norma není pozitivně definitní, může tedy nabývat i záporných hodnot. Je definována jako skalární součin vektoru se sebou samým.

\(||\mathbf{a}||^2 =\langle \mathbf{a},\mathbf{a} \rangle =-a_0^2+a_1^2+a_2^2+a_3^2\)

Vektor je nazýván jednotkovým, pokud platí \(||\mathbf{a}||^2=\pm 1\).

Báze

Standardní bázi Minkowského prostoru tvoří 4 ortogonální jednotkové vektory \(\mathbf{e}_0,\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\), pro které platí

\(-||\mathbf{e}_0||^2 = ||\mathbf{e}_1||^2 = ||\mathbf{e}_2||^2 = ||\mathbf{e}_3||^2 = 1\,.\)

Tuto podmínku lze stručně zapsat jako

\(\langle \mathbf{e}_\mu, \mathbf{e}_\nu \rangle = \eta_{\mu\nu}\,,\)

kde \(\eta\) je diagonální matice

\(\eta=\operatorname{diag}\left(-1,1,1,1\right)=\begin{pmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{pmatrix}\,.\)

Související články

Externí odkazy