Kuželosečka

Z Multimediaexpo.cz

Druhy kuželoseček

Kuželosečka je rovinná křivka, která vznikne jako průnik roviny s pláštěm rotačního kuželu (tzv. kuželová plocha), přičemž rovina neprochází jeho vrcholem.

Obsah

Typy kuželoseček

Protínáme-li kužel rovinou kolmou na osu symetrie rotačního kuželu, výslednou kuželosečkou je kružnice. Protínáme-li kužel rovinou rovnoběžnou právě s jednou z povrchových přímek pláště kuželu, výslednou kuželosečkou je parabola. Protínáme-li kužel rovinou, která svírá s osou symetrie rotačního kuželu úhel menší než 90° a větší než polovina vrcholového úhlu kuželu, výslednou kuželosečkou je elipsa. Rovina přitom protíná všechny povrchové přímky pláště kužele a není tedy s žádnou z nich rovnoběžná. Protínáme-li kužel rovinou, která svírá s osou symetrie rotačního kuželu úhel menší než polovina vrcholového úhlu kuželu, výslednou kuželosečkou je hyperbola; přitom rovina je rovnoběžná právě se dvěma povrchovými přímkami kuželu. Conic sections 2n.png
(A: parabola, B: elipsa a kružnice, C: hyperbola)

Degenerované kuželosečky

Za kuželosečku bývá často považován také průnik kuželové plochy s rovinou procházející vrcholem kuželové plochy. Takovéto kuželosečky označujeme jako degenerované (nevlastní, singulární), neboť podle polohy roviny a osy kuželové plochy dochází k redukci kuželosečky na bod, přímku nebo dvě přímky. Kuželosečky, které nejsou degenerované, tzn. kružnici, elipsu, parabolu a hyperbolu, označujeme jako vlastní (regulární) kuželosečky.

Algebraické vyjádření

Každou kuželosečku lze vyjádřit rovnicí

,

kde koeficienty jsou reálná čísla, přičemž . Tato rovnice je algebraickou rovnicí druhého stupně v a .

Invarianty

Při transformaci souřadnic se nemění některé charakteristické veličiny algebraické rovnice kuželosečky. Tyto veličiny se označují jako invarianty. Uvedená rovnice má tři invarianty:

  • determinant kuželosečky
  • determinant kvadratických členů
  • třetím invarientem je

Při transformaci souřadnic se tedy mění koeficienty , avšak uvedené invarianty se nezmění.

Klasifikace kuželoseček podle invariantů

Invarianty rovnice kuželosečky lze použít ke klasifikaci jednotlivých křivek, které jsou touto rovnicí určeny. Je-li , pak se jedná o vlastní kuželosečku. Pro jde o kuželosečku degenerovanou. Rovnicemi s jsou určeny tzv. nestředové kuželosečky (např. parabola). Pro se jedná o kuželosečky středové (např. elipsa).

Rozdělení kuželoseček
středové kuželosečky

nestředové kuželosečky

vlastní kuželosečky

reálná elipsa
hyperbola parabola

imaginární elipsa

nevlastní kuželosečky
dvojice nerovnoběžných (protínajících se) imaginárních přímek s reálným průsečíkem v nekonečnu dvě reálné různoběžky
dvě různé reálné rovnoběžky

dvě splývající rovnoběžky

dvě imaginární rovnoběžky

Související články

Externí odkazy