LED

Z Multimediaexpo.cz

Přejít na: navigace, hledání
Soubor:LEDs.jpg
Různé LED

LED (z anglického Light-Emitting Diode - dioda emitující světlo) je elektronická polovodičová součástka obsahující přechod P-N. Narozdíl od klasických diod, LED vyzařuje viditelné světlo v úzkém spektru barev a používá se v široké řadě aplikací. Prochází-li přechodem elektrický proud v propustném směru, přechod vyzařuje (emituje) nekoherentní světlo s úzkým spektrem. Může emitovat i jiné druhy záření. Tento jev je způsoben elektroluminiscencí. Pásmo spektra záření diody je závislé na chemickém složení použitého polovodiče. LED jsou vyráběny s pásmy vyzařování od skoro ultrafialových, přes různé barvy viditelného spektra, až po infračervené pásmo. Poměrně dlouho trval vývoj modré LED, na nějž čekal jeden z projektů ploché barevné televizní obrazovky. Z principu funkce LED vyplývá, že nelze přímo emitovat bílé světlo - starší bíle zářící diody většinou obsahují trojici čipů vybíraných tak, aby bylo aditivním míšením v rozptylném materiálu vrchlíku obalu diody dosaženo vjemu bílého světla. Protože není možné přímo emitovat bílé světlo, pravé bílé LED využívají luminoforu. Některé bílé LED emitují modré světlo, část tohoto světla je přímo na čipu luminoforem transformována na žluté světlo a díky mísení těchto barev vzniká bílá. Jiné typy bílých LED emitují ultrafialové záření, to je přímo na čipu luminoforem transformováno na bílé světlo. Se zkracující se vlnovou délkou emitovaného světla roste velikost potřebného elektrického proudu a z toho vyplývajícího napětí. U křemíkové diody je toto napětí asi 0,6 V, u zelené LED z GaP 1,7 V a u modré z SiC již 2,5 V. Základní monokrystaly diod bývají překryty kulovými vrchlíky z epoxidové pryskyřice nebo akrylového polyesteru. Materiály, z nichž se LED vyrábějí, totiž mají poměrně vysoký index lomu a velká část vyzařovaného světla by se odrážela totálním odrazem zpět na rovinném rozhraní se vzduchem. Oproti jiným elektrickým zdrojům světla (žárovka, výbojka, doutnavka) mají LED tu výhodu, že pracují s poměrně malými hodnotami proudu a napětí. Z toho vyplývá jejich užití v displejích (ve tvaru cifer a písmen). Kombinací LED základních barev (červená, zelená, modrá) je možno získat i barevné obrazovky. Konstrukčně představují LED součástku, v níž je kontaktovaný čip (nebo kombinace čipů) zastříknut materiálem s požadovanými optickými vlastnostmi (LED se vyrábějí v bodovém či rozptylném provedení, s různým vyzařovacím úhlem). Kontakty mohou být v provedení pro povrchovou montáž (SMD) nebo ve tvaru ohebných či poddajných přívodů. Sestavy více LED, pouzdřené společně mohou mít samostatně vyveden každý čip, společnou anodu či katodu nebo jiný systém kontaktování dle zamýšleného užití (například dvojbarevné diody). Nick Holonyak Jr. (narozen 1928) na University of Illinois at Urbana-Champaign vyvinul první praktickou LED s viditelným spektrem v roce 1962.

Obsah

Zapojení vývodů

Bližší záběr na LED diodu, jsou zde vidět vnitřní struktury.

Na rozdíl od žárovek, u kterých nezáleží na polaritě napájecího napětí a jsou schopny tedy pracovat na střídavé napětí, LED zapojené nesprávným způsobem nepracují. Když je napětí na P-N přechodu diody zapojené správně, říkáme že je zapojena v propustném směru a v tomto stavu skrz ní prochází proud. Když je zapojené opačně než má být, říkáme že je zapojená v závěrném směru a neprochází skrz ní téměř žádný proud a ani nevyzařuje žádné světlo. Proud v propustném směru LED se pohybuje od 1-2 mA u tzv. nízkopříkonových LED přes 20 mA u standardních LED až po proudy vyšší než 1 A u speciálních LED používaných v osvětlovací technice. Některé LED jsou schopny pracovat se střídavým napětím. V takovém případě jsou ale rozsvíceny jen polovinu periody, ve které jsou polarizovány propustně. Periodicky se tak rozsvěcují a zhasínají s frekvencí střídavého zdroje. I když jediným 100% přesným způsobem, jak zjistit polaritu vývodu LED, je podívat se do jejího katalogového listu, tak jsou zde některé obvykle platné způsoby pro její označení, pozor podle velikosti P nebo N vývodu uvnitř pouzdra často nelze polaritu stanovit tak jako v tabulce a bývá i obráceně:

znaménko: +
polarita: kladná záporná
výstup: anoda (A) katoda (K)
vývod: dlouhý krátký
pouzdro z vnějšku: zakulacené ploché
uvnitř pouzdra: menší větší
barevně: červená černá

Méně spolehlivé metody pro určení polarity jsou:

znaménko: +
označení pouzdra: nic proužek
číslo vývodu: 1 2
DPS: kruhový čtvercový

Protože napěťová charakteristika LED je vzhledem k proudové charakteristice prakticky stejná jako u jakékoliv jiné diody (proud vzhledem k napětí roste přibližně exponenciálně), malá změna napětí vyvolá obrovskou změnu proudu. Při výrobě jednotlivých kusů LED mohou nastat drobné odchylky, které by při paralelním zapojení LED způsobily rozdílnou svítivost, nebo dokonce zničení LED s VA charakteristikou posunutou blíže k nule. Proto se LED vždy zapojují se sériovým odporem. Díky tomu, že u diody napětí je logaritmicky vztaženo k proudu, tak se dá v rozsahu, ve kterém LED pracuje (svítí) považovat za konstantní. Tedy se dá říct, že je spotřebovaná energie prakticky jen funkcí proudu. Pokud chceme zajistit stálý odběr energie s ohledem na různé charakteristiky napájení a LED, tak bychom měli použít pro napájení diod proudový zdroj. Pokud nevyžadujeme vysokou účinnost zapojení(například u různých indikátorů), můžeme se přiblížit proudovému zdroji tím, že připojíme LED v sérii s rezistorem omezujícím protékající proud ke zdroji stálého napětí(změny napětí vyvolají menší změny proudu). Tento způsob je běžně používán. Většina LED má taky nízké průrazné napětí, takže mohou být zničeny přiložením závěrného napětí i o výši jen několika voltů. Protože někteří výrobci nedodržují standardy označení uvedené výše, tak by mělo být v katalogovém listu vždy pokud možno vyhledáno, jak je to u daného konkrétního typu diody. Nebo můžeme polaritu zjistit zkouškou, kdy diodu zkusíme připojit ke zdroji nízkého napětí v sérii s ochranným rezistorem.

Regulace jasu LED

Obecně platí: čím více proudu, tím více světla. Nejjednodušší (a nejčastější) způsob nastavení proudu diodou je pomocí předřadného odporu (který je zapojen v sérii s diodou LED). K regulaci jasu LED je možné použít i jednoduchý regulátor s tranzistorem, až po trochu složitější pulzně šířkový modulátor - PWM. LEDkou protékají krátkodobé impulzy proudu. Tyto impulzy se přivádějí v daleko vyšší frekvenci, než je lidské oko schopné zachytit, takže LEDka vypadá jako by svítila trvale. Změnou střídy pak měníme jas. Jedná se o řešení používané zejména v zapojeních s mikrokontroléry. Pokud máme dostatečně velké napětí, můžeme propojit několik LED do série pouze s jedním omezujícím rezistorem. Paralelní zapojení je obvykle problém. LED musí být stejného typu kvůli tomu, aby měly co nejpodobnější prahové napětí. Rozdíly ve výrobním procesu mohou způsobit, že zapojení nebude fungovat.

Další typy LED

Vícebarevné LED zařízení obsahují dvě paralelně zapojené, opačně polarizované, diody, každá jiné barvy (typicky červená a zelená), umožňující zobrazit dvě barvy, nebo rozsah škály barev, změnou poměru dob po kterou jsou jednotlivé diody rozsvíceny. Jiné zase obsahují sadu diod rozdílných barev uspořádaných do skupin zapojených se společnou anodou nebo katodou. Zde můžeme dosáhnout širší škály různých barev bez toho, že bychom museli měnit polaritu napájení (např. často používaná RGB LED - červená, zelená a modrá). LED obvykle stále svítí, když skrze ně prochází proud, jsou ale dostupné i blikající LED. Ty mají stejný technologický základ, navíc obsahují klopný obvod, který způsobí, že LED bliká (typicky s periodou jedna sekunda). Nejběžněji jsou k dostání v červené, žluté nebo zelené barvě. Většina jich svítí pouze jednou barvou, ale jsou k dostání i vícebarevné. Existují speciální typy LED se zabudovanými rezistory. Můžeme tak ušetřit místo na desce plošných spojů. To může být zvlášť užitečné při konstrukci prototypů, nebo při změnách zamýšleného zapojení (když potřebujeme udělat změny už na hotové desce). Často se využívají pro indikaci v automobilové technice, kde mají vestavěný předřadný odpor pro 12 V. Např. v dálkovém ovládání od televize můžeme vidět infračervené LED. Také se používají v IrDA, pro komunikaci elektronických zařízení na malé vzdálenosti. Pouhým okem toto záření není vidět, ale protože CCD snímače v digitálních kamerách jsou na toto záření citlivé, jsou infračervené LED nedílnou součástí některých bezpečnostních kamerových systémů. Pro speciální účely se vyrábí ultrafialové LED. Tyto LED jsou instalovány v zařízeních pro kontrolu ochranných prvků bankovek, nebo jiných dokumentů.

Charakteristické hodnoty napětí v propustném směru

Pro obyčejné LED v 3 mm nebo 5 mm pouzdrech, jsou charakteristické následující hodnoty napětí v propustném směru. To závisí na technologii výroby, typu použitých polovodičů, teplotě a protékajícím proudu (hodnoty zde uvedené přibližně pro hodnotu 20 mA)

Barva Úbytek napětí
Infračervená 1,6 V
Červená 1,8 V až 2,1 V
Oranžová 2,2 V
Žlutá 2,4 V
Zelená 2,6 V
Modrá 3,0 V až 3,5 V
Bílá 3,0 V až 3,5 V
Ultrafialová 3,5 V

U mnoha LED je uváděno maximální závěrné napětí 5 V.

Výhody použití LED

LEDs jsou vyráběny v mnoha různých tvarech a velikostech. 5 mm velké v cylindrickém pouzdru (červená, pátá zleva) je nejobvyklejší, odhadem se podílí na 80% celkové produkce. Barva plastické čočky pouzdra je obvykle stejná, jako barva vyzařovaného světla, ale nemusí to být pravidlem. Například pro infračervené diody je obvykle používáno purpurové pouzdro a pro modré zase čiré.

Nevýhody LED

Aplikace, ve kterých jsou LED využity

Soubor:LED DISP.JPG
Starý LED displej použitý v kalkulačce.
Jediná superjasná LED společně se skleněnými čočkami je schopna vytvořit přenosový kanál, který může přenášet video v DVD kvalitě na značnou vzdálenost. Toto zařízení, RONJA, může snadno postavit každý elektrotechnický nadšenec.
Osvětlení LED na Audi S6

Světelné zdroje pro systémy strojového snímání

Systémy strojového snímání často vyžadují jasné a homogenní osvětlení, aby dokázali lépe vykonávat požadovanou činnost. LED jsou často k tomuto účelu využívány, a na tomto poli zůstává jeden z jejich hlavních způsobů využití, dokud jejich cena neklesne natolik, aby byly využity v širším měřítku i v jiných oblastech. LED diody představují téměř dokonalý zdroj světla pro systémy strojového snímání z několika hlavních důvodů:

Související články

Literatura

Reference

Externí odkazy


Osobní nástroje
Jmenné prostory
Varianty
Akce
Hlavní funkce
Navigace
Nástroje
Příspěvky a dary
Další informace